High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells.

نویسندگان

  • Li-Zhen Cao
  • Dong-Qi Tang
  • Marko E Horb
  • Shi-Wu Li
  • Li-Jun Yang
چکیده

Pdx1 has been shown to convert hepatocytes into both exocrine and endocrine pancreatic cells in mice, but it fails to selectively convert hepatocytes into pure insulin-producing cells (IPCs). The molecular mechanisms underlying the transdifferentiation remain unclear. In this study, we generated a stably transfected rat hepatic cell line named WB-1 that expresses an active form of Pdx1 along with a reporter gene, RIP-eGFP. Our results demonstrate that Pdx1 induces the expression of multiple genes related to endocrine pancreas development and islet function in these liver cells. We do not however find any expression of the late-stage genes (Pax4, Pax6, Isl-1, and MafA) related to beta-cell development, and the cells do not secrete insulin upon the glucose challenge. Yet when WB-1 cells are transplanted into diabetic NOD-scid mice, these genes become activated and hyperglycemia is completely reversed. Detailed comparison of gene expression profiles between pre- and posttransplanted WB-1 cells demonstrates that the WB-1 cells have similar properties as that seen in pancreatic beta-cells. In addition, in vitro culture in high-glucose medium is sufficient to induce complete maturation of WB-1 cells into functional IPCs. In summary, we find that Pdx1-VP16 is able to selectively convert hepatic cells into pancreatic endocrine precursor cells. However, complete transdifferentiation into functional IPCs requires additional external factors, including high glucose or hyperglycemia. Thus, transdifferentiation of hepatocytes into functional IPCs may serve as a viable therapeutic option for patients with type 1 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liver stem cell - derived h - cell surrogates for treatment of type 1 diabetes B

Consistent with the common embryonic origin of liver and pancreas as well the similar glucose-sensing systems in hepatocytes and pancreatic h-cells, it should not be surprising that liver stem cells/hepatocytes can transdifferentiate into insulin-producing cells under high-glucose culture conditions or by genetic reprogramming. Persistent expression of the pancreatic duodenal homeobox-1 (Pdx1) ...

متن کامل

Generation of Functional Insulin-Producing Cells from Neonatal Porcine Liver-Derived Cells by PDX1/VP16, BETA2/NeuroD and MafA

Surrogate β-cells derived from stem cells are needed to cure type 1 diabetes, and neonatal liver cells may be an attractive alternative to stem cells for the generation of β-cells. In this study, we attempted to generate insulin-producing cells from neonatal porcine liver-derived cells using adenoviruses carrying three genes: pancreatic and duodenal homeobox factor1 (PDX1)/VP16, BETA2/NeuroD an...

متن کامل

In-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells

  Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 53 12  شماره 

صفحات  -

تاریخ انتشار 2004